Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37298388

RESUMO

Traumatic brain injury (TBI) is an established risk factor for neurodegenerative diseases. In this study, we used the Closed Head Injury Model of Engineered Rotational Acceleration (CHIMERA) to investigate the effects of a single high-energy TBI in rTg4510 mice, a mouse model of tauopathy. Fifteen male rTg4510 mice (4 mo) were impacted at 4.0 J using interfaced CHIMERA and were compared to sham controls. Immediately after injury, the TBI mice showed significant mortality (7/15; 47%) and a prolonged duration of loss of the righting reflex. At 2 mo post-injury, surviving mice displayed significant microgliosis (Iba1) and axonal injury (Neurosilver). Western blotting indicated a reduced p-GSK-3ß (S9):GSK-3ß ratio in TBI mice, suggesting chronic activation of tau kinase. Although longitudinal analysis of plasma total tau suggested that TBI accelerates the appearance of tau in the circulation, there were no significant differences in brain total or p-tau levels, nor did we observe evidence of enhanced neurodegeneration in TBI mice compared to sham mice. In summary, we showed that a single high-energy head impact induces chronic white matter injury and altered GSK-3ß activity without an apparent change in post-injury tauopathy in rTg4510 mice.


Assuntos
Lesões Encefálicas Traumáticas , Traumatismos Cranianos Fechados , Tauopatias , Camundongos , Masculino , Animais , Glicogênio Sintase Quinase 3 beta/genética , Lesões Encefálicas Traumáticas/genética , Encéfalo/metabolismo , Tauopatias/genética , Modelos Animais de Doenças , Aceleração , Proteínas tau/genética , Proteínas tau/metabolismo
2.
Alzheimers Res Ther ; 13(1): 58, 2021 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-33678186

RESUMO

BACKGROUND: Glial fibrillary acidic protein (GFAP) has emerged as a promising fluid biomarker for several neurological indications including traumatic brain injury (TBI), a leading cause of death and disability worldwide. In humans, serum or plasma GFAP levels can predict brain abnormalities including hemorrhage on computed tomography (CT) scans and magnetic resonance imaging (MRI). However, assays to quantify plasma or serum GFAP in preclinical models are not yet available. METHODS: We developed and validated a novel sensitive GFAP immunoassay assay for mouse plasma on the Meso Scale Discovery immunoassay platform and validated assay performance for robustness, precision, limits of quantification, dilutional linearity, parallelism, recovery, stability, selectivity, and pre-analytical factors. To provide proof-of-concept data for this assay as a translational research tool for TBI and Alzheimer's disease (AD), plasma GFAP was measured in mice exposed to TBI using the Closed Head Impact Model of Engineered Rotational Acceleration (CHIMERA) model and in APP/PS1 mice with normal or reduced levels of plasma high-density lipoprotein (HDL). RESULTS: We performed a partial validation of our novel assay and found its performance by the parameters studied was similar to assays used to quantify human GFAP in clinical neurotrauma blood specimens and to assays used to measure murine GFAP in tissues. Specifically, we demonstrated an intra-assay CV of 5.0%, an inter-assay CV of 7.2%, a lower limit of detection (LLOD) of 9.0 pg/mL, a lower limit of quantification (LLOQ) of 24.8 pg/mL, an upper limit of quantification (ULOQ) of at least 16,533.9 pg/mL, dilution linearity of calibrators from 20 to 200,000 pg/mL with 90-123% recovery, dilution linearity of plasma specimens up to 32-fold with 96-112% recovery, spike recovery of 67-100%, and excellent analyte stability in specimens exposed to up to 7 freeze-thaw cycles, 168 h at 4 °C, 24 h at room temperature (RT), or 30 days at - 20 °C. We also observed elevated plasma GFAP in mice 6 h after TBI and in aged APP/PS1 mice with plasma HDL deficiency. This assay also detects GFAP in serum. CONCLUSIONS: This novel assay is a valuable translational tool that may help to provide insights into the mechanistic pathophysiology of TBI and AD.


Assuntos
Lesões Encefálicas Traumáticas , Animais , Biomarcadores , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Proteína Glial Fibrilar Ácida , Imunoensaio , Camundongos , Tomografia Computadorizada por Raios X
3.
Exp Neurol ; 324: 113116, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31734317

RESUMO

Traumatic brain injury (TBI) is a leading cause of death and disability in modern societies. Diffuse axonal and vascular injury are nearly universal consequences of mechanical energy impacting the head and contribute to disability throughout the injury severity spectrum. CHIMERA (Closed Head Impact Model of Engineered Rotational Acceleration) is a non-surgical, impact-acceleration model of rodent TBI that reliably produces diffuse axonal injury characterized by white matter gliosis and axonal damage. At impact energies up to 0.7 joules, which result in mild TBI in mice, CHIMERA does not produce detectable vascular or grey matter injury. This study was designed to expand CHIMERA's capacity to induce more severe injuries, including vascular damage and grey matter gliosis. This was made possible by designing a physical interface positioned between the piston and animal's head to allow higher impact energies to be transmitted to the head without causing skull fracture. Here, we assessed interface-assisted single CHIMERA TBI at 2.5 joules in wild-type mice using a study design that spanned 6 h-60 d time points. Injured animals displayed robust acute neurological deficits, elevated plasma total tau and neurofilament-light levels, transiently increased proinflammatory cytokines in brain tissue, blood-brain barrier (BBB) leakage and microstructural vascular abnormalities, and grey matter microgliosis. Memory deficits were evident at 30 d and resolved by 60 d. Intriguingly, white matter injury was not remarkable at acute time points but evolved over time, with white matter gliosis being most extensive at 60 d. Interface-assisted CHIMERA thus enables experimental modeling of distinct endophenotypes of TBI that include acute vascular and grey matter injury in addition to chronic evolution of white matter damage, similar to the natural history of human TBI.


Assuntos
Gliose/patologia , Traumatismos Cranianos Fechados/patologia , Traumatismos Cranianos Fechados/psicologia , Transtornos da Memória/etiologia , Transtornos da Memória/psicologia , Rememoração Mental , Lesões do Sistema Vascular/patologia , Substância Branca/patologia , Aceleração , Animais , Axônios/patologia , Química Encefálica , Circulação Cerebrovascular , Depressão/psicologia , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Rotação , Natação/psicologia
4.
Exp Neurol ; 317: 87-99, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30822421

RESUMO

Traumatic brain injury (TBI) affects at least 3 M people annually. In humans, repetitive mild TBI (rmTBI) can lead to increased impulsivity and may be associated with chronic traumatic encephalopathy. To better understand the relationship between repetitive TBI (rTBI), impulsivity and neuropathology, we used CHIMERA (Closed-Head Injury Model of Engineered Rotational Acceleration) to deliver five TBIs to rats, which were continuously assessed for trait impulsivity using the delay discounting task and for neuropathology at endpoint. Compared to sham controls, rats with rTBI displayed progressive impairment in impulsive choice. Histological analyses revealed reduced dopaminergic innervation from the ventral tegmental area to the olfactory tubercle, consistent with altered impulsivity neurocircuitry. Consistent with diffuse axonal injury generated by CHIMERA, white matter inflammation, tau immunoreactivity and degeneration were observed in the optic tract and corpus callosum. Finally, pronounced grey matter microgliosis was observed in the olfactory tubercle. Our results provide insight into the mechanisms by which rTBI leads to post-traumatic psychiatric-like symptoms in a novel rat TBI platform.


Assuntos
Neurônios Dopaminérgicos/patologia , Traumatismos Cranianos Fechados/patologia , Inflamação/patologia , Tubérculo Olfatório/patologia , Substância Branca/patologia , Proteínas tau/metabolismo , Animais , Axônios/patologia , Comportamento de Escolha , Corpo Caloso/patologia , Modelos Animais de Doenças , Gliose/patologia , Traumatismos Cranianos Fechados/psicologia , Masculino , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/patologia , Fosforilação , Ratos , Ratos Long-Evans , Recompensa , Tauopatias/patologia
5.
Alzheimers Res Ther ; 11(1): 6, 2019 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-30636629

RESUMO

BACKGROUND: The annual incidence of traumatic brain injury (TBI) in the United States is over 2.5 million, with approximately 3-5 million people living with chronic sequelae. Compared with moderate-severe TBI, the long-term effects of mild TBI (mTBI) are less understood but important to address, particularly for contact sport athletes and military personnel who have high mTBI exposure. The purpose of this study was to determine the behavioural and neuropathological phenotypes induced by the Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA) model of mTBI in both wild-type (WT) and APP/PS1 mice up to 8 months post-injury. METHODS: Male WT and APP/PS1 littermates were randomized to sham or repetitive mild TBI (rmTBI; 2 × 0.5 J impacts 24 h apart) groups at 5.7 months of age. Animals were assessed up to 8 months post-injury for acute neurological deficits using the loss of righting reflex (LRR) and Neurological Severity Score (NSS) tasks, and chronic behavioural changes using the passive avoidance (PA), Barnes maze (BM), elevated plus maze (EPM) and rotarod (RR) tasks. Neuropathological assessments included white matter damage; grey matter inflammation; and measures of Aß levels, deposition, and aducanumab binding activity. RESULTS: The very mild CHIMERA rmTBI conditions used here produced no significant acute neurological or motor deficits in WT and APP/PS1 mice, but they profoundly inhibited extinction of fear memory specifically in APP/PS1 mice over the 8-month assessment period. Spatial learning and memory were affected by both injury and genotype. Anxiety and risk-taking behaviour were affected by injury but not genotype. CHIMERA rmTBI induced chronic white matter microgliosis, axonal injury and astrogliosis independent of genotype in the optic tract but not the corpus callosum, and it altered microgliosis in APP/PS1 amygdala and hippocampus. Finally, rmTBI did not alter long-term tau, Aß or amyloid levels, but it increased aducanumab binding activity. CONCLUSIONS: CHIMERA is a useful model to investigate the chronic consequences of rmTBI, including behavioural abnormalities consistent with features of post-traumatic stress disorder and inflammation of both white and grey matter. The presence of human Aß greatly modified extinction of fear memory after rmTBI.


Assuntos
Precursor de Proteína beta-Amiloide , Concussão Encefálica/patologia , Concussão Encefálica/psicologia , Medo/psicologia , Fenótipo , Presenilina-1 , Precursor de Proteína beta-Amiloide/genética , Animais , Aprendizagem da Esquiva/fisiologia , Encéfalo/patologia , Concussão Encefálica/genética , Doença Crônica , Medo/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Presenilina-1/genética
6.
Neuroinformatics ; 17(3): 373-389, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30406865

RESUMO

Traumatic brain injury (TBI) is one of the leading causes of death and disability worldwide. Detailed studies of the microglial response after TBI require high throughput quantification of changes in microglial count and morphology in histological sections throughout the brain. In this paper, we present a fully automated end-to-end system that is capable of assessing microglial activation in white matter regions on whole slide images of Iba1 stained sections. Our approach involves the division of the full brain slides into smaller image patches that are subsequently automatically classified into white and grey matter sections. On the patches classified as white matter, we jointly apply functional minimization methods and deep learning classification to identify Iba1-immunopositive microglia. Detected cells are then automatically traced to preserve their complex branching structure after which fractal analysis is applied to determine the activation states of the cells. The resulting system detects white matter regions with 84% accuracy, detects microglia with a performance level of 0.70 (F1 score, the harmonic mean of precision and sensitivity) and performs binary microglia morphology classification with a 70% accuracy. This automated pipeline performs these analyses at a 20-fold increase in speed when compared to a human pathologist. Moreover, we have demonstrated robustness to variations in stain intensity common for Iba1 immunostaining. A preliminary analysis was conducted that indicated that this pipeline can identify differences in microglia response due to TBI. An automated solution to microglia cell analysis can greatly increase standardized analysis of brain slides, allowing pathologists and neuroscientists to focus on characterizing the associated underlying diseases and injuries.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Encéfalo/patologia , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Microglia/patologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Substância Branca/patologia
7.
Exp Neurol ; 301(Pt A): 26-38, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29269117

RESUMO

Peak incidence of traumatic brain injury (TBI) occurs in both young and old individuals, and older age at injury is associated with worse outcome and poorer recovery. Moderate-severe TBI is a reported risk factor for dementia, including Alzheimer's disease (AD), but whether mild TBI (mTBI) alters AD pathogenesis is not clear. To delineate how age at injury and predisposition to amyloid formation affect the acute response to mTBI, we used the Closed Head Impact Model of Engineered Rotational Acceleration (CHIMERA) model of TBI to induce two mild injuries in wild-type (WT) and APP/PS1 mice at either 6 or 13months of age and assessed behavioural, histological and biochemical changes up to 14days post-injury. Age at injury did not alter acute behavioural responses to mTBI, including measures of neurological status, motor performance, spatial memory, fear, or anxiety, in either strain. Young APP/PS1 mice showed a subtle and transient increase in diffuse Aß deposits after injury, whereas old APP/PS1 mice showed decreased amyloid deposits, without significant alterations in total soluble or insoluble Aß levels at either age. Age at injury and genotype showed complex responses with respect to microglial and cytokine outcomes, where post-injury neuroinflammation is increased in old WT mice but attenuated in old APP/PS1 mice. Intriguingly, silver staining confirmed axonal damage in both strains and ages, yet only young WT and APP/PS1 mice showed neurofilament-positive axonal swellings after mTBI, as this response was almost entirely attenuated in old mice. Plasma neurofilament-light levels were significantly elevated after injury only in young APP/PS1 mice. This study suggests that mild TBI has minimal effects on Aß metabolism, but that age and genotype can each modify acute outcomes related to white matter injury.


Assuntos
Doença de Alzheimer , Concussão Encefálica/patologia , Encéfalo/patologia , Substância Branca/patologia , Fatores Etários , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Genótipo , Inflamação/patologia , Filamentos Intermediários/metabolismo , Camundongos , Camundongos Transgênicos
8.
Mol Neurodegener ; 12(1): 60, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28830501

RESUMO

BACKGROUND: Alzheimer's Disease (AD), characterized by accumulation of beta-amyloid (Aß) plaques in the brain, can be caused by age-related failures to clear Aß from the brain through pathways that involve the cerebrovasculature. Vascular risk factors are known to increase AD risk, but less is known about potential protective factors. We hypothesize that high-density lipoproteins (HDL) may protect against AD, as HDL have vasoprotective properties that are well described for peripheral vessels. Epidemiological studies suggest that HDL is associated with reduced AD risk, and animal model studies support a beneficial role for HDL in selectively reducing cerebrovascular amyloid deposition and neuroinflammation. However, the mechanism by which HDL may protect the cerebrovascular endothelium in the context of AD is not understood. METHODS: We used peripheral blood mononuclear cell adhesion assays in both a highly novel three dimensional (3D) biomimetic model of the human vasculature composed of primary human endothelial cells (EC) and smooth muscle cells cultured under flow conditions, as well as in monolayer cultures of ECs, to study how HDL protects ECs from the detrimental effects of Aß. RESULTS: Following Aß addition to the abluminal (brain) side of the vessel, we demonstrate that HDL circulated within the lumen attenuates monocyte adhesion to ECs in this biofidelic vascular model. The mechanism by which HDL suppresses Aß-mediated monocyte adhesion to ECs was investigated using monotypic EC cultures. We show that HDL reduces Aß-induced PBMC adhesion to ECs independent of nitric oxide (NO) production, miR-233 and changes in adhesion molecule expression. Rather, HDL acts through scavenger receptor (SR)-BI to block Aß uptake into ECs and, in cell-free assays, can maintain Aß in a soluble state. We confirm the role of SR-BI in our bioengineered human vessel. CONCLUSION: Our results define a novel activity of HDL that suppresses Aß-mediated monocyte adhesion to the cerebrovascular endothelium.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Leucócitos Mononucleares/metabolismo , Lipoproteínas HDL/metabolismo , Doença de Alzheimer/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Humanos , Monócitos/metabolismo , Placa Amiloide/metabolismo
9.
Exp Neurol ; 292: 80-91, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28274861

RESUMO

CHIMERA (Closed Head Impact Model of Engineered Rotational Acceleration) is a recently described animal model of traumatic brain injury (TBI) that primarily produces diffuse axonal injury (DAI) characterized by white matter inflammation and axonal damage. CHIMERA was specifically designed to reliably generate a variety of TBI severities using precise and quantifiable biomechanical inputs in a nonsurgical user-friendly platform. The objective of this study was to define the lower limit of single impact mild TBI (mTBI) using CHIMERA by characterizing the dose-response relationship between biomechanical input and neurological, behavioral, neuropathological and biochemical outcomes. Wild-type male mice were subjected to a single CHIMERA TBI using six impact energies ranging from 0.1 to 0.7J, and post-TBI outcomes were assessed over an acute period of 14days. Here we report that single TBI using CHIMERA induces injury dose- and time-dependent changes in behavioral and neurological deficits, axonal damage, white matter tract microgliosis and astrogliosis. Impact energies of 0.4J or below produced no significant phenotype (subthreshold), 0.5J led to significant changes for one or more phenotypes (threshold), and 0.6 and 0.7J resulted in significant changes in all outcomes assessed (mTBI). We further show that linear head kinematics are the most robust predictors of duration of unconsciousness, severity of neurological deficits, white matter injury, and microgliosis following single TBI. Our data extend the validation of CHIMERA as a biofidelic animal model of DAI and establish working parameters to guide future investigations of the mechanisms underlying axonal pathology and inflammation induced by mechanical trauma.


Assuntos
Axônios/efeitos dos fármacos , Concussão Encefálica/fisiopatologia , Encéfalo/efeitos dos fármacos , Lesão Axonal Difusa/tratamento farmacológico , Animais , Axônios/patologia , Fenômenos Biomecânicos/efeitos dos fármacos , Encéfalo/patologia , Concussão Encefálica/patologia , Concussão Encefálica/terapia , Lesão Axonal Difusa/patologia , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL
10.
PLoS One ; 11(1): e0146540, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26784694

RESUMO

Concussion is a serious health concern. Concussion in athletes is of particular interest with respect to the relationship of concussion exposure to risk of chronic traumatic encephalopathy (CTE), a neurodegenerative condition associated with altered cognitive and psychiatric functions and profound tauopathy. However, much remains to be learned about factors other than cumulative exposure that could influence concussion pathogenesis. Approximately 20% of CTE cases report a history of substance use including androgenic-anabolic steroids (AAS). How acute, chronic, or historical AAS use may affect the vulnerability of the brain to concussion is unknown. We therefore tested whether antecedent AAS exposure in young, male C57Bl/6 mice affects acute behavioral and neuropathological responses to mild traumatic brain injury (TBI) induced with the CHIMERA (Closed Head Impact Model of Engineered Rotational Acceleration) platform. Male C57Bl/6 mice received either vehicle or a cocktail of three AAS (testosterone, nandrolone and 17α-methyltestosterone) from 8-16 weeks of age. At the end of the 7th week of treatment, mice underwent two closed-head TBI or sham procedures spaced 24 h apart using CHIMERA. Post-repetitive TBI (rTBI) behavior was assessed for 7 d followed by tissue collection. AAS treatment induced the expected physiological changes including increased body weight, testicular atrophy, aggression and downregulation of brain 5-HT1B receptor expression. rTBI induced behavioral deficits, widespread axonal injury and white matter microgliosis. While AAS treatment did not worsen post-rTBI behavioral changes, AAS-treated mice exhibited significantly exacerbated axonal injury and microgliosis, indicating that AAS exposure can alter neuronal and innate immune responses to concussive TBI.


Assuntos
Anabolizantes/farmacologia , Androgênios/farmacologia , Axônios/efeitos dos fármacos , Axônios/patologia , Concussão Encefálica/complicações , Lesão Encefálica Crônica/patologia , Esteroides/farmacologia , Animais , Concussão Encefálica/patologia , Lesões Encefálicas/complicações , Lesões Encefálicas/patologia , Lesão Encefálica Crônica/complicações , Modelos Animais de Doenças , Progressão da Doença , Masculino , Metiltestosterona/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Nandrolona/farmacologia , Testosterona/análogos & derivados , Testosterona/farmacologia , Fatores de Tempo
11.
Biochim Biophys Acta ; 1862(5): 1027-36, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26454209

RESUMO

Many lines of evidence suggest a protective role for high-density lipoprotein (HDL) and its major apolipoprotein (apo)A-I in Alzheimer's Disease (AD). HDL/apoA-I particles are produced by the liver and intestine and, in addition to removing excess cholesterol from the body, are increasingly recognized to have vasoprotective functions. Here we tested the ability of reconstituted HDL (rHDL) consisting of human apoA-I reconstituted with soy phosphatidylcholine for its ability to lower amyloid beta (Aß) levels in symptomatic APP/PS1 mice, a well-characterized preclinical model of amyloidosis. Animals were treated intravenously either with four weekly doses (chronic study) or a single dose of 60mg/kg of rHDL (acute study). The major finding of our acute study is that soluble brain Aß40 and Aß42 levels were significantly reduced within 24h of a single dose of rHDL. By contrast, no changes were observed in our chronic study with respect to soluble or deposited Aß levels in animals assessed 7days after the final weekly dose of rHDL, suggesting that beneficial effects diminish as rHDL is cleared from the body. Further, rHDL-treated animals showed no change in amyloid burden, cerebrospinal fluid (CSF) Aß levels, neuroinflammation, or endothelial activation in the chronic study, suggesting that the pathology-modifying effects of rHDL may indeed be acute and may be specific to the soluble Aß pool. That systemic administration of rHDL can acutely modify brain Aß levels provides support for further investigation of the therapeutic potential of apoA-I-based agents for AD. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Amiloidose/terapia , Apolipoproteína A-I/uso terapêutico , Encéfalo/metabolismo , Lipoproteínas HDL/uso terapêutico , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/sangue , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/sangue , Amiloidose/sangue , Amiloidose/metabolismo , Amiloidose/patologia , Animais , Apolipoproteína A-I/administração & dosagem , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Humanos , Lipoproteínas HDL/administração & dosagem , Masculino , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/sangue
12.
Mol Neurodegener ; 9: 55, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25443413

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a major health care concern that currently lacks any effective treatment. Despite promising outcomes from many preclinical studies, clinical evaluations have failed to identify effective pharmacological therapies, suggesting that the translational potential of preclinical models may require improvement. Rodents continue to be the most widely used species for preclinical TBI research. As most human TBIs result from impact to an intact skull, closed head injury (CHI) models are highly relevant, however, traditional CHI models suffer from extensive experimental variability that may be due to poor control over biomechanical inputs. Here we describe a novel CHI model called CHIMERA (Closed-Head Impact Model of Engineered Rotational Acceleration) that fully integrates biomechanical, behavioral, and neuropathological analyses. CHIMERA is distinct from existing neurotrauma model systems in that it uses a completely non-surgical procedure to precisely deliver impacts of prescribed dynamic characteristics to a closed skull while enabling kinematic analysis of unconstrained head movement. In this study, we characterized head kinematics as well as functional, neuropathological, and biochemical outcomes up to 14d following repeated TBI (rTBI) in adult C57BL/6 mice using CHIMERA. RESULTS: Head kinematic analysis showed excellent repeatability over two closed head impacts separated at 24h. Injured mice showed significantly prolonged loss of righting reflex and displayed neurological, motor, and cognitive deficits along with anxiety-like behavior. Repeated TBI led to diffuse axonal injury with extensive microgliosis in white matter from 2-14d post-rTBI. Injured mouse brains also showed significantly increased levels of TNF-α and IL-1ß and increased endogenous tau phosphorylation. CONCLUSIONS: Repeated TBI using CHIMERA mimics many of the functional and pathological characteristics of human TBI with a reliable biomechanical response of the head. This makes CHIMERA well suited to investigate the pathophysiology of TBI and for drug development programs.


Assuntos
Lesões Encefálicas/metabolismo , Lesões Encefálicas/fisiopatologia , Modelos Animais de Doenças , Animais , Fenômenos Biomecânicos , Humanos , Interleucina-1beta/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Fator de Necrose Tumoral alfa/metabolismo
13.
Blood ; 124(8): 1335-43, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24904118

RESUMO

Mutations in HFE are the most common cause of hereditary hemochromatosis (HH). HFE mutations result in reduced expression of hepcidin, a hepatic hormone, which negatively regulates iron absorption from the duodenum and iron release from macrophages. However, the mechanism by which HFE regulates hepcidin expression in hepatocytes is not well understood. It is known that the bone morphogenetic protein (BMP) pathway plays a central role in controlling hepcidin expression in the liver. Here we show that HFE overexpression increased Smad1/5/8 phosphorylation and hepcidin expression, whereas inhibition of BMP signaling abolished HFE-induced hepcidin expression in Hep3B cells. HFE was found to associate with ALK3, inhibiting ALK3 ubiquitination and proteasomal degradation and increasing ALK3 protein expression and accumulation on the cell surface. The 2 HFE mutants associated with HH, HFE C282Y and HFE H63D, regulated ALK3 protein ubiquitination and trafficking differently, but both failed to increase ALK3 cell-surface expression. Deletion of Hfe in mice resulted in a decrease in hepatic ALK3 protein expression. Our results provide evidence that HFE induces hepcidin expression via the BMP pathway: HFE interacts with ALK3 to stabilize ALK3 protein and increase ALK3 expression at the cell surface.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Regulação da Expressão Gênica/fisiologia , Hepcidinas/biossíntese , Antígenos de Histocompatibilidade Classe I/metabolismo , Proteínas de Membrana/metabolismo , Substituição de Aminoácidos , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Células COS , Chlorocebus aethiops , Proteína da Hemocromatose , Células Hep G2 , Hepcidinas/genética , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Metaloproteinases da Matriz Secretadas/genética , Metaloproteinases da Matriz Secretadas/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteínas Smad/metabolismo , Ubiquitinação/fisiologia
14.
FASEB J ; 28(1): 337-49, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24056087

RESUMO

FE65 is an adaptor protein that binds to the amyloid precursor protein (APP). As such, FE65 has been implicated in the pathogenesis of Alzheimer's disease. In addition, evidence suggests that FE65 is involved in brain development. It is generally believed that FE65 participates in these processes by recruiting various interacting partners to form functional complexes. Here, we show that via its first phosphotyrosine binding (PTB) domain, FE65 binds to the small GTPase ADP-ribosylation factor 6 (ARF6). FE65 preferentially binds to ARF6-GDP, and they colocalize in neuronal growth cones. Interestingly, FE65 stimulates the activation of both ARF6 and its downstream GTPase Rac1, a regulator of actin dynamics, and functions in growth cones to stimulate neurite outgrowth. We show that transfection of FE65 and/or ARF6 promotes whereas small interfering RNA knockdown of FE65 or ARF6 inhibits neurite outgrowth in cultured neurons as compared to the mock-transfected control cells. Moreover, knockdown of ARF6 attenuates FE65 stimulation of neurite outgrowth and defective neurite outgrowth seen in FE65-deficient neurons is partially corrected by ARF6 overexpression. Notably, the stimulatory effect of FE65 and ARF6 on neurite outgrowth is abrogated either by dominant-negative Rac1 or knockdown of Rac1. Thus, we identify FE65 as a novel regulator of neurite outgrowth via controlling ARF6-Rac1 signaling.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuritos/metabolismo , Proteínas Nucleares/metabolismo , Fator 6 de Ribosilação do ADP , Animais , Células CHO , Células Cultivadas , Cricetulus , Imunoprecipitação , Ligação Proteica , Ratos , Técnicas do Sistema de Duplo-Híbrido
15.
Dis Model Mech ; 6(6): 1325-38, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24046354

RESUMO

Traumatic brain injury (TBI) is a major worldwide healthcare problem. Despite promising outcomes from many preclinical studies, the failure of several clinical studies to identify effective therapeutic and pharmacological approaches for TBI suggests that methods to improve the translational potential of preclinical studies are highly desirable. Rodent models of TBI are increasingly in demand for preclinical research, particularly for closed head injury (CHI), which mimics the most common type of TBI observed clinically. Although seemingly simple to establish, CHI models are particularly prone to experimental variability. Promisingly, bioengineering-oriented research has advanced our understanding of the nature of the mechanical forces and resulting head and brain motion during TBI. However, many neuroscience-oriented laboratories lack guidance with respect to fundamental biomechanical principles of TBI. Here, we review key historical and current literature that is relevant to the investigation of TBI from clinical, physiological and biomechanical perspectives, and comment on how the current challenges associated with rodent TBI models, particularly those involving CHI, could be improved.


Assuntos
Lesões Encefálicas/terapia , Modelos Biológicos , Fenômenos Biomecânicos , Humanos
16.
Knee Surg Sports Traumatol Arthrosc ; 21(5): 1226-33, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22461015

RESUMO

PURPOSE: Initial graft tensioning is important in anterior cruciate ligament reconstruction (ACLR), but its effect on graft healing is still not clear. Since all previous animal studies on graft tensioning used bone-patellar tendon-bone, this study aimed to investigate the effect of initial graft tensioning on ACLR using tendon graft. METHODS: Fifty-five Sprague-Dawley rats underwent ACLR using flexor digitorum longus tendon graft. A constant force of 2 or 4 N was applied during graft fixation. At 0, 2, and 6 weeks, knee samples were harvested (n = 6) for static knee laxity test and graft pull-out test. Histological examination was performed at 2 and 6 weeks post-injury (n = 4). RESULTS: At time zero, knee laxity was restored by ACLR with 2 or 4 N tensioning as compared to ACL-deficient group (p < 0.001), and the 4 N group exhibited a better restoration as compared to 2 N group (p = 0.031). At week 2 post-operation, the 4 N group still exhibited a better restoration in knee laxity (p = 0.001) and knee stiffness (p = 0.002) than the 2 N group; the graft pull-out force (p = 0.032) and stiffness (p = 0.010) were also higher. At week 6 post-operation, there was no significant difference between the 2 and 4 N group in knee laxity and graft pull-out strength. Histological examination showed that the beneficial effect of higher initial graft tension may be contributed by maintenance of graft integrity at mid-substance and reduction in adverse peri-graft bone changes in the femoral tunnel region. CONCLUSIONS: A higher initial graft tension favours the restoration of knee laxity and promotes graft healing in ACLR using free tendon graft in the rat model.


Assuntos
Reconstrução do Ligamento Cruzado Anterior/métodos , Ligamento Cruzado Anterior/cirurgia , Tendões/transplante , Animais , Lesões do Ligamento Cruzado Anterior , Enxerto Osso-Tendão Patelar-Osso , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley , Cicatrização
17.
PLoS One ; 7(9): e44622, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23028567

RESUMO

Hepcidin is an antimicrobial peptide, which also negatively regulates iron in circulation by controlling iron absorption from dietary sources and iron release from macrophages. Hepcidin is synthesized mainly in the liver, where hepcidin is regulated by iron loading, inflammation and hypoxia. Recently, we have demonstrated that bone morphogenetic protein (BMP)-hemojuvelin (HJV)-SMAD signaling is central for hepcidin regulation in hepatocytes. Hepcidin is also expressed by macrophages. Studies have shown that hepcidin expression by macrophages increases following bacterial infection, and that hepcidin decreases iron release from macrophages in an autocrine and/or paracrine manner. Although previous studies have shown that lipopolysaccharide (LPS) can induce hepcidin expression in macrophages, whether hepcidin is also regulated by BMPs in macrophages is still unknown. Therefore, we examined the effects of BMP signaling on hepcidin expression in RAW 264.7 and J774 macrophage cell lines, and in primary peritoneal macrophages. We found that BMP4 or BMP6 alone did not have any effect on hepcidin expression in macrophages although they stimulated Smad1/5/8 phosphorylation and Id1 expression. In the presence of LPS, however, BMP4 and BMP6 were able to stimulate hepcidin expression in macrophages, and this stimulation was abolished by the NF-κB inhibitor Ro1069920. These results suggest that hepcidin expression is regulated differently in macrophages than in hepatocytes, and that BMPs regulate hepcidin expression in macrophages in a LPS-NF-κB dependent manner.


Assuntos
Proteínas Morfogenéticas Ósseas/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos , Western Blotting , Proteína Morfogenética Óssea 4/farmacologia , Proteína Morfogenética Óssea 6/farmacologia , Linhagem Celular , Células Cultivadas , Hepcidinas , Proteína 1 Inibidora de Diferenciação/metabolismo , Camundongos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Proteína Smad8/metabolismo , Sulfóxidos/farmacologia , Tetrazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...